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We present ultrafast z-scan measurements of the two-photon absorption (TPA) spectra of a pair of two-
dimensionally conjugated quadrupolar donor/acceptor (D/A) chromophores. The all-donor substituted spe-
cies displays a peak TPA cross section [0®=520+30 GM] that is more than twice that of the D—A species
[0 =240+20 GM]. Unlike previous structure—property studies that have evaluated TPA behavior for D/A
molecules through the comparison of dipolar and quadrupolar compounds, both molecules investigated
herein are quadrupolar, ultimately providing a more consistent evaluation of the effects of donor and/or ac-

ceptor substitution on the TPA of conjugated chromophores. © 2006 Optical Society of America
OCIS codes: 190.4710, 190.4180, 300.6410, 160.4890.

Two-photon absorption (TPA) is a primary process of
interest in various emergent photonics applications.1
To be of use, TPA materials must display large ab-
sorptive nonlinearities tuned within specific spectral
regions.” At present, conjugated organic molecules
with high m-electron densities are at the forefront of
TPA research,1 but there remains considerable need
in establishing structure—property relationships.l_4
Early studies on quasi-one-dimensional molecular ar-
chitectures have shown that incorporating strong do-
nor (D) and/or acceptor (A) groups across a conju-
gated backbone (-7-) can lead to substantial increases
in the molecular two-photon cross section, @ In
particular, the structure—property relationship of
quasi-one-dimensional molecules that have quadru-
polar structures such as D-7-D or A-7-A have been
extensively studied.>” Recent studies have also ex-
plored higher-dimensional D-A systems.Z’s’9 How-
ever, despite these efforts, a comprehensive picture
for this structure—property relationship has yet to be
fully unveiled. For example, some studies find that
D-7-D schemes show larger cross sections than
D-7-A schemes,”? while other studies show them to
be equivalent.'!

The comparison between D-7-D and D-7-A
schemes is not always straightforward due to the fact
that D-7-D molecules are often quadrupolar, and
D-7-A analogues are dipolar, resulting in different
parity selection rules for the TPA transition in addi-
tion to differing factors such as the importance of
both one-photon-allowed intermediate states in the
quadrupolar systems and permanent dipole(s)
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strength in the dipolar systems. Thus the best way to
establish  structure—property TPA relationships
would be to allow for the two aspects—D/A substitu-
tion and symmetry—to be treated independently.

A solution to this issue is found in the use of two-
dimensionally conjugated molecules'®? such as the
cruciform tetrakis(phenylethynyl)benzenes (TPEBs,
Fig. 1)."* Electron donor and/or acceptor substitution
of the four terminal TPEB groups provides an ideal
framework for studying the intrinsic effects of the
symmetry and the electron distribution on TPA. Al-
though these molecules have been studied
theoretically,'® their experimental TPA spectra have
not been reported. Herein, we present and compare
the TPA characteristics of an all-donor- and a D-A-
substituted TPEB (Fig. 1).

The two chromophores under study possess inver-
sion symmetry and thus have no net permanent di-
pole moment in the ground state. Despite being qua-
drupolar, the compounds differ in charge distribution
and conjugation path arrangements: TD-TPEB has
two equivalent straight conjugation paths (D-7-D)
through the para-linkage of the central phenyl ring;
whereas para-TPEB has two nonequivalent linear-
conjugation paths (D-7-D and A-7-A). Furthermore,

D = N(C4Hog)2
= N02
TD-TPEB para-TPEB
Fig. 1. Compounds studied in this work.
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the bent-conjugation paths through the ortho-linkage
are D-7-D for TD-TPEB but D-7-A for para-TPEB.
We present the TPA spectra of dilute TPEBs in tet-
rahydrofuran (THF) solutions (5—11 mM) obtained
with a z-scan technique using ultrafast (~125 fs) am-
plified pulses with a near-Gaussian spatial proﬁle.16
TPA cross sections, ¢®, are determined at each
measurement wavelength from fits to the laser-
power dependence of the two-photon absorbance,
qo, obtained from open-aperture traces, using g,
=(IoLegN.0'?)/ (how), where I, is the peak on-axis op-
tical intensity, L. is the effective path length
(~1mm), and N, is the number density of the

sample. " The Rayleigh range is 4—8 mm, depending
on wavelength, and is 1onger than L. in fulfillment
of the thin sample condition.'® I o was varied through
the range of 10-150 GW/cm?. Good linearity be-
tween q, and I, was displayed at all wavelengths,
suggesting that contributions from the excited-state
absorption shown previously to exist at longer time
scales in these systems is negligible for the present
z-scan measurements.'® For comparability of our ob-
tained o'® values to others reported in the literature,
we also measured iteratively (at each Wavelength)
MPPBTY  and/or 1,4- bis(p-dibutylaminostyryl)-
2,5-dimethoxybenzene (compound 8 in Ref. 3) under
the same experimental conditions.

Figure 2 presents the observed TPA spectrum

overlapped with the one-photon absorption
(OPA) spectrum and the measured OPA at
the TPA-measurement concentrations for each

of the compounds. TD-TPEB has a TPA
peak at 710nm with o®=520x30GM (1GM
=1075" cm* s photon~! molecule™!), and para-TPEB
has a peak at 750 nm with ¢®=240+20 GM. Thus
TD-TPEB yields a peak cross section that is both
blueshifted and more than double the magnitude of
that in para-TPEB, in contrast to previous theoreti-
cal results for linear quadrupolar molecules.?!

The TPA spectrum of para-TPEB displays a sharp
increase when the laser frequency approaches the
OPA edge (hatched area, Fig. 2) in a fashion similar
to that reported for some other symmetric
molecules.'™®? This is attributed to the tuning of a
double resonance condition. At the lowest measured
wavelength (586 nm), para-TPEB shows considerable
TPA (~600 GM) while still maintaining one-photon
transparency. On the other hand, the rise in ¢!? for
TD-TPEB is not significant in the same wavelength
region. This is most likely because the lowest-energy
OPA peak is blueshifted for TD-TPEB in comparison
with para-TPEB.

The low-energy peak TPA cross section in quadru-
polar systems is typically described in terms of a
three-level model, which represents the simplest ap-
proximation w1th1n the essential- state approach to
the full sum-over-states treatment.?® In this model,
absorption from the ground state (g) to the two-
photon-allowed (one-photon-forbidden) excited state
(e') is mediated by an intermediate one-photon-
allowed (two-photon-forbidden) level (e). The peak
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Fig. 2. OPA and TPA spectra of the all-donor TD-TPEB
(top) and D-A para-TPEB (bottom). The OPA spectrum
(solid gray curves) scale is top and right; the TPA scale is
bottom and left. The measured OPA spectrum at the TPA
experimental concentration is included (hatched area;
scales are bottom and right) to indicate the tuning of TPA
to the residual OPA absorption below 600 nm. Arrows indi-
cate the lowest-energy OPA peak—shoulder.
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TPA cross section is thus proportional to the magni-
tude of transition dipoles M, and M, and is given
by
2
E ge,M M

0-(32—)level (2E ) r ( 1)
ge'

where it is assumed that, on peak, E, ~2%w, and
(Ege—fh0)>Tg, (i.e., far from double resonance). Here
fiw is the photon energy; E,, and E,, are the one- and
two-photon transition energies, respectively;
the damping factor (linewidth) for the transition; and
C is a numerical prefactor.

Inspection of the relative positions of the lowest
OPA and TPA peaks in the two compounds, as shown
in Fig. 2, suggests that TD-TPEB has a larger detun-
ing factor (2E.,-E,,/) than para-TPEB and should
thus display a lower (~25%) TPA cross section. Ex-
perimentally, however, TD-TPEB displays a twofold
increase in TPA than para-TPEB. This difference
must therefore originate from transition dipole
terms, M., and M,,/, in Eq. (1). In practice, M,, is of-
ten appr0x1mated from the integrated OPA oscillator
strength. TD-TPEB does display a, considerably
larger absorption than para-TPEB™ and might
therefore be expected to have a larger M,,. The re-
spective linewidths, however, are not simlfar and a
valid approximation of M, is thus problematic. Esti-
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mations of M,,, are difficult to obtain experimentally
and must be calculated quantum chemically. Thus
the roles of M,, and M, remain to be confirmed.

A recent theoretical report did not identify any
two-photon resonances for TPEBs at wavelengths
greater than 520 nm." This clearly contradicts our
experimental results in which both TPEBs display a
continuum of TPA commencing at ~900 nm with
large cross-section peaks in the near-IR. Further-
more, our observation that the all-donor species
shows a higher TPA cross section than the D—A com-
pound further disagrees with the predictions of Ref.
15. The large TPA cross section of TD-TPEB may
stem from large transition dipoles arising from the
central tetraethynylbenzene core acting as an accep-
tor, thus leading to a favorable D-7-A-7-D
arrangement.

In conclusion, we report the differences in the TPA
spectra of two quadrupolar D-7-D/A chromophores.
The lowest-energy TPA peak in the all-donor-
substituted TD-TPEB presents a considerably larger
cross section in comparison with that with D-7-A
para-TPEB. Thus the incorporation of donor groups
more strongly increases peak TPA than does acceptor
substitution. By using the two-dimensionally conju-
gated TPEB framework, we are able to confirm this
structure—property relationship without resorting to
comparisons between molecules of disparate ground-
state polarity.
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